副教授

汪能

 
 
姓名(中文):汪能电话:
姓名(英文):Neng WANG邮箱:nwang17@szu.edu.cn
个  人  主  页 :其他:
 
 
电话 邮箱 nwang17@szu.edu.cn
个人主页 其他

汪能,副教授,深圳市海外高层次人才,复旦大学2010届物理学学士,2015届理论物理博士,2015~2019年香港科技大学物理系博士后。2019年3月加入深圳大学。主要从事光力,人工微结构光子学,非厄米光学以及拓扑光子学等研究。

Dr. Neng Wang, Associate Professor, Overseas High Level Talent of Shenzhen. He received his Bachelor's degree of physics in 2010 and Ph.D. of theoretical physics in 2015 from Fudan University.  He worked at the Hong Kong University of Science and Technology as a postdoc from 2015 to 2019 and joined Shenzhen University as an Assistant Professor in 2019. His research is mainly focused on the optical force, artificial microstructure photonics, non-Hermitian optics and topological photonics.

教育经历:

• 博士,复旦大学,2010/09–2015/07

• 学士,复旦大学,2006/09–2010/07

科研经历:

• 副教授,深圳大学,2023/08–至今

• 助理教授,深圳大学,2019/03–2023/07

• 博士后,香港科技大学,2015/08–2019/02

研究方向:

• 光力 (optical force)

• 人工微结构光子学 (artificial microstructure photonics)

• 非厄米光学 (non-Hermitian optics)

• 拓扑光子学 (topological photonics)

研究成果:

[1] N. Wang, J. Ng and G. P. Wang, Morphology-independent general-purpose optical surface tractor beam, Nature Communications 15, 1 (2024).

[2] F. Feng, N. Wang (共同通讯) and G. P. Wang, Temporal transfer matrix method for Lorentzian dispersive time-varying media, Applied Physics Letters 124, 101701 (2024).

[3] N. Wang, F. Feng and G. P. Wang, Achieving bi-anisotropic coupling through uniform temporal modulations without inversion symmetry disruption, Optics Letters 49, 2493 (2024).

[4] N. Wang, F. Feng and G. P. Wang, Nonlocal effective medium theory for phononic temporal metamaterials, Journal of Physics: Condensed Matter 36, 105701 (2024).

[5] N. Wang, F. Feng and G. P. Wang, Broadband frequency translation by space–time interface with weak permittivity temporal change, Optics Letters 48, 4436 (2023).

[6] F. Feng, N. Wang (共同通讯) and G. P. Wang, Lorentzian dispersive antireffection temporal coatings with multiple time durations, Optics Letters 48, 4328 (2023).

[7] L. Cui, S. Liu and N. Wang(通讯), Optical sorting by trajectory tracking with high sensitivity near the exceptional points, New Journal of Physics 25, 093048 (2023).

[8] N. Wang, Acoustic topological one-way waveguides with tunable widths using spinning components, Journal of Physics Communications 6, 085014 (2022).

[9] F. Feng, N. Wang (共同通讯) and G. P. Wang, Magneto-optical double zero-index media and their electromagnetic properties in the bulk, New Journal of Physics 24, 113023 (2022).

[10] N. Wang, R.-Y. Zhang, Q. Guo, S. Wang , G. P. Wang, and C. T. Chan, Optical pulling using topologically protected one way transport surface-arc waves, Physical Review B 105, 014104 (2022).

[11] L. Cui and N. Wang (通讯), Trapping and self-assembly of particles by photonic chiral surface waves, Physical Review A 105, 053512 (2022).

[12] D. Yang, F. Feng , L. Sun, N. Wang (共同通讯), and G. P. Wang, Realization of magneto-optical near-zero-index metamaterial by using an array of spinning cylinders, Physical Review A 105, 043517 (2022).

[13] N. Wang, R.-Y. Zhang, and C. T. Chan, Optical forces on a cylinder induced by surface waves and the conservation of the canonical momentum of light, Optics Express 29, 20590 (2021).

[14] L. Cui, N. Wang (共同通讯), and J. Ng, Computation of internal optical forces using the Helmholtz tensor, Physical Review A 104, 013508 (2021).

[15] N. Wang and G. P. Wang, One-dimensional time-Floquet photonic crystal, New Journal of Physics 23, 103023 (2021).

[16] N. Wang, R.-Y. Zhang, and C. T. Chan, Robust acoustic pulling using chiral surface waves, Physical Review Applied 15, 024034 (2021).

[17] N. Wang, R.-Y. Zhang, C. T. Chan, and G. P. Wang, Effective medium theory for a photonic pseudospin-1/2 system, Physical Review B 102, 094312 (2020).

[18] H. Song , N. Wang (共同通讯), K. Yu, J. Pei, and G. P. Wang, Disorder-immune metasurfaces with constituents exhibiting the anapole mode, New Journal of Physics 22, 113011 (2020).

[19] N. Wang and G. P. Wang, Effective medium theory with closed-form expressions for bi-anisotropic optical metamaterials, Optics Express 27, 23739 (2019).

[20] N. Wang, S. Wang, Z.-Q. Zhang, C. T. Chan, Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations, Physical Review B 98, 045426 (2018).

[21] N. Wang, Z.-Q. Zhang, and C. T. Chan, Photonic Floquet media with a complex time-periodic permittivity, Physical Review B 98, 085142 (2018).

[22] N. Wang, S. Wang, and J. Ng, Electromagnetic stress tensor for an amorphous metamaterial medium, Physical Review A 97, 033839 (2018).

[23] N. Wang, X. Li, J. Chen, Z. Lin, and J. Ng, Gradient and scattering forces of anti-reflection-coated spheres in an aplanatic beam, Scientific Reports 8, 1 (2018).

[24] N. Wang, W. Lu, J. Ng, and Z. Lin, Optimized optical "tractor beam" for core-shell nanoparticles, Optics Letters 39, 2399 (2014).

[25] N. Wang, Z. Lin, and J. Ng, Laser induced surface stress on water droplets, Optics Express 22, 23770 (2014).

[26] N. Wang, H. Chen, W. Lu, S. Liu, and Z. Lin, Giant omnidirectional radiation enhancement via radially anisotropic zero-index metamaterial, Optics Express 21, 23712 (2013).

[27] N. Wang, J. Chen, S. Liu, and Z. Lin, Dynamical and phase-diagram study on stable optical pulling force in Bessel beams, Physical Review A 87, 063812 (2013).

[28] N. Wang, S. Liu, and Z. Lin, Tailoring optical properties of surface charged dielectric nanoparticles based on an effective medium theory, Optics Express 21, 20387 (2013).